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Abstract- Proportional-Integral-Derivative feedback control, or PID Controller, is one of the 

most widely used controllers in the robotics industry. Its ability to effectively regulate a range of 

processes and dynamic systems while having a very basic structure and easy tuning methods is 

the foundation of its success. Although it does not perform as well as contemporary control 

techniques, it is still the greatest place to start when developing the autopilot for an unmanned 

aircraft. In reality, PID Controls are used in most current attitude control features, whether they 

are found in open-source or commercial autopilots. 

I. Introduction 

The Proportional, Integral, and Derivative components work together additively to form the PID 

Controller. We frequently use P-controllers, PI-controllers, or PD-controllers because not all of 

them must be present. The PID controller will be discussed in the subsequent sections of this 

work; any other version may be obtained by omitting the pertinent parts. 

The "tracking error" e and its three gains KP, KI, and KD serve as the foundation for the PID 

controller's operation. They result in the control action u when combined, as demonstrated by the 

following expression: 

Figure 1 Block diagram of the PID Controller 

Figure 2 the general equation of the PID controller 



The proportional term corresponds to the first term of the expression, the integral action to the 

second, and the derivative to the last one. Each of these terms plays specific roles in order to 

shape the transient and steady-state response of the closed-loop system. 

II. Basic PID  

We'll start by clearing up basic terminology for PID controllers. The output is referred to as the 

process variable (the measured position), and the reference is referred to as the setpoint (the 

desired position). Here are a few examples of typical variable name patterns for pertinent 

amounts. 

r(t) Setpoint u(t) Control input 

e(t) Error y(t) Output 

 

The error e(t) is r(t) – y(t). 

The proportional term drives the position error to zero, the derivative term drives the velocity 

error to zero, and the integral term accumulates the area between the setpoint and output plots 

over time (the integral of position error) and adds the current total to the control input. We’ll go 

into more detail on each of these. 

 

III. Proportional: 

The P-action is the component mostly relevant with the dominant response of the system. It 

drives the position error to zero. where KP is the proportional gain and e(t) is the error at the 

current time (t). 

Proportional gains pull the system in the desired direction like "software-defined springs." Recall 

from your physics classes that we represent springs as follows: (F = -k.x) where (F) is the applied 

force, k is a proportional constant, and x is the displacement from the equilibrium position. 

Where (0) is the equilibrium point being another method to express this (F = k (0 – x)). The 

equations relate one to one if we make the equilibrium point the setpoint of our feedback 

controller. 

F = k (r-x) 

u(t) = KP.e(t) = KP.(r(t) – y(t)) 

Figure 3 P controller block diagram. 



As a result, like a spring, the proportional controller pushes the system's output toward the 

setpoint with a force proportional to the mistake. 

Also, increasing the P gain KP typically leads to shorter rise times, but also larger overshoots. 

Although it can decrease the settling time of the system, it can also lead to highly oscillatory or 

unstable behavior. 

IV. Derivative: 

The velocity inaccuracy is reduced to zero via the derivative term. The derivative action adjusts 

for the error signal's rate of change, and it mostly affects how the closed-loop system's damping 

behavior is shaped. 

where KP is the proportional gain, KD is the derivative gain, and e(t) is the error at the current 

time (t). 

A proportional controller for position (KP) and a proportional controller for velocity (KD) are 

both components of a PD controller. The way the location setpoint varies over time indirectly 

provides the velocity setpoint. We shall rewrite the equation for a PD controller to demonstrate 

this. 

u(k) = KP.e(k) + KD
𝑒𝑘−𝑒𝑘−1

𝑑𝑡
 

where u(k) is the control input at timestep k and e(k) is the error at timestep k. e(k) is defined as 

e(k) = r(k) – x(k) where r(k) is the setpoint and x(k) is the current state at timestep k. 

u(k) = KP.(r(k) – x(k)) + KD 
(𝑟𝑘−𝑥𝑘)−(𝑟𝑘−1−𝑥𝑘−1)

𝑑𝑡
 

u(k) = KP.(r(k) – x(k)) + KD 
𝑟𝑘−𝑥𝑘−𝑟𝑘−1+𝑥𝑘−1

𝑑𝑡
 

u(k) = KP.(r(k) – x(k)) + KD 
𝑟𝑘−𝑟𝑘−1−𝑥𝑘+𝑥𝑘−1

𝑑𝑡
 

u(k) = KP.(r(k) – x(k)) + KD 
(𝑟𝑘−𝑟𝑘−1)−(𝑥𝑘−𝑥𝑘−1)

𝑑𝑡
 

Figure 4 PD controller block diagram. 



u(k) = KP.(r(k) – x(k)) + KD (
(𝑟𝑘−𝑥𝑘)

𝑑𝑡
  - 

(𝑥𝑘−𝑥𝑘−1)

𝑑𝑡
 ) 

The term KD slows the system down if it is moving since if the setpoint is constant, the implicit 

velocity setpoint is zero. Like a "software-defined damper," this operates. These are often found 

on door closers, and they have linearly increased damping forces. 

In that sense, increasing the D gain KD, typically leads to smaller overshoot and a better damped 

behavior, but also to larger steady-state errors. 

V. Integration 

The integral action is frequently used to optimize the system's steady-state response and control 

its dynamic behavior. In essence, it gives the system memory. The integral phrase adds the 

current total to the control input after accumulating the area between the setpoint and output 

plots over time (i.e., the integral of position error). Integration is the process of adding up the 

space in between two curves. 

u(t) = KP.e(t) + KI∫ 𝑒(τ)𝑑τ
𝑡

0
 

where KP is the proportional gain, KI is the integral gain, e(t) is the error at the current time t, 

and τ is the integration variable. 

The Integral integrates from time 0 to the current time t. we use τ for the integration because we 

need a variable to take on multiple values throughout the integral. 

Figure 5 PI controller block diagram. 



The proportional term may be insufficient to get the output all the way to the setpoint when the 

system is near to it in steady-state, in which case the derivative term is zero. The steady-state 

inaccuracy as indicated in figure 6 can occur from this. 

 

Integrating the error and adding it to the control input is a popular technique for getting rid of 

steady-state error. The control effort is increased as a result until the system converges. Adding 

an integrator to the flywheel controller removes steady-state error for a flywheel, as shown in 

figures 6 and 7. Figure 8 illustrates how an excessive integral gain might cause overshoot. 

 

Figure 6 P controller with steady-state error. 



 

 

 

Figure 7 PI controller without steady-state error. 

Figure 8 PI controller with overshoot due to higher KI gain. 



Increasing the I gain KI, leads to reduction of the steady-state error (often elimination) but also 

more and larger oscillations. 

VI. PID collection 

When these terms are combined, one gets the typical definition for a PID controller. 

u(t) = KP.e(t) + KI∫ 𝑒(τ)𝑑τ
𝑡

0
 + KD

𝑑𝑒

𝑑𝑡
 

 

It is clear from this brief explanation of the function of each PID component action that the three 

separate gains cannot be individually tuned. Each of them really seeks to provide a desirable 

response characteristic (such as quicker response, damped and smooth oscillations, and close to 

zero steady-state error), but at the same time has a drawback that must be offset by fine-tuning a 

different gain. As a result, PID tuning is an iterative, highly connected process. 

VII. Summary of tuning tendencies 

Figure 9 Block diagram of PID controller. 

Figure 10 PID effect on responses. 



 

VIII. Response Types 

Underdamped, overdamped, and critically damped responses are the three main types of 

responses that a PID controller-driven system often exhibits. Figure 11 displays them. 

Rise time for step responses refers to how long it takes the system to reach the reference 

following the application of the step input. The system's time to reach the reference after the step 

input has been applied is known as the settling time. 

Before settling, an underdamped response oscillates about the reference. An overdamped 

reaction rises slowly and doesn't exceed the reference point. The response that rises the fastest 

without exceeding the reference is one that is critically damped. 

IX. Tuning PID 

1. Set KP, KI, and KD to zero. 

2. Increase KP until the output starts to oscillate around the setpoint. 

3. Increase KD as much as possible without introducing jittering in the system response. 

Plot the position setpoint, velocity setpoint, measured position, and measured velocity. The 

velocity setpoint can be obtained via numerical differentiation of the position setpoint (i.e., v 

desired, k = 
rk−rk−1

Δt
). Increase KP until the position tracks well, then increase KD until the 

velocity tracks well. 

 

Figure 11 PID response types. 

https://docs.wpilib.org/en/stable/docs/software/advanced-controls/controls-glossary.html#term-output
https://docs.wpilib.org/en/stable/docs/software/advanced-controls/controls-glossary.html#term-setpoint
https://docs.wpilib.org/en/stable/docs/software/advanced-controls/controls-glossary.html#term-system-response
https://docs.wpilib.org/en/stable/docs/software/advanced-controls/controls-glossary.html#term-setpoint
https://docs.wpilib.org/en/stable/docs/software/advanced-controls/controls-glossary.html#term-setpoint
https://docs.wpilib.org/en/stable/docs/software/advanced-controls/controls-glossary.html#term-setpoint
https://docs.wpilib.org/en/stable/docs/software/advanced-controls/controls-glossary.html#term-setpoint


One can raise KI such that the controller reaches the setpoint in an acceptable length of time if it 

settles at an output that is either above or below the setpoint. Integral control is greatly favored 

over a steady-state feedforward, though (especially for PID control). 

Be careful since integral windup may happen if KI is too large. The integral term can accrue an 

error greater than the maximum control input after a significant change in setpoint. As a result, 

the system overshoots and keeps growing until the built-up mistake is eliminated. 

X. Conclusion 

Both the PID controller's potent performance and its simplicity contribute to its success. Modern 

techniques are available now to best adjust such control regulations. However, the actual 

installation of PID controllers is a far more complex procedure. The following significant 

concerns, among others, must be taken into account while building flight control features 

utilizing PID controllers: 

• The PID controller must be developed to take into consideration the limitations of the 

aerial vehicle's control margins. 

• Due to the frequently critically unstable or steady qualities displayed by unmanned 

aircraft, the integral term requires extra consideration. 

• Aerial vehicles are nonlinear systems, with the exception of hovering or trimmed flight. 

Given that the PID is a controller, it follows that it will not always behave correctly over 

the system's whole flight envelope. To deal with this reality, a number of approaches are 

used, such as Gain scheduling. 

Finally, PID tuning is primarily a form of engineering that cannot just rely on automated 

methods but also requires the designer's skill. 
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